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Abstract

In this note, we explain how the algorithms in [111, [5] and [61 im-

mediately give formulas which can be used for the efficient symbolic

computation of series expansions to solutions of nonlinear systems of

ordinary differential equations. As a by product of this analysis, we
derive formulas relating trees to the coefficients of the series expan-

sions, similar to the work by Leroux and Viennot [15], [16], [17], and

Lamnabhi, Leroux and Viennot [18].

1 Introduction

In this note, we explain how the algorithms in [11], [5] and [6] immediately

give formulas which can be used for the efficient symbolic computation of

series expansions to solutions of nonlinear systems of ordinary differential

equations. As a by product of this analysis, we derive formulas relating trees

to the coefficients of the series expansions, similar to the work by Leroux

and Viennot [15], [16], [17], and Lamnabhi, Leroux and Viennot [18]. In this

section and the next, we follow the exposition in [14]. This is an extended

abstract: a complete version will be published elsewhere.

We now describe the basic idea of how trees can be used to organize

computations involving vector fields following [8] and [7]. For background
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material on Hopf algebras, see [19]. Consider a control system

k(t) = El(x(t)) + ul(t)E2(z(t)) + u2(t)E3(x(t)), x(0) = x ° 6 R N, (1)

where El, E2 and E3 are vector fields defined in a neighborhood of x ° 6 R. N

and t _-* ui(t) are controls. Our goal is to describe a class of algorithms for

the effective symbolic computation of expressions built from the vector fields

that describe the local behavior of the control system. These expressions

include iterated Lie brackets and the generating series of the system.

The starting point is to assign trees to vector fields as illustrated in Fig-

ure 1, and then to impose a multiplication on the trees which is compatible

with the composition of vector fields. Assume that the vector fields Ej have

the form:
N

Ej= Z " ...,aiD., j=1,2,3, j=l, M, (2)
tt=l

where aj are smooth functions on R N and D t, = O/Oxt,. Now

E: . E1 = __bj(Djal)Di + _'_bjaiDjni

and E3 • E2 • E1 is equal to

_* "J a2 (nknja_')Di+_ ,k ,, . ,, .__a 3 (Dka 2 )(Dja_,)Di+__a_k "i " a3 a2 (D,a, )DkD,

_ x--" ,k "_-"'DkDjDi+_ a 3"ka2,J (nka,"i)D, Di+_-_a_'a_i(Dka_J)DjDi.
(3)

Here the sum is for i, j, k = I,..., N and hence involves O(N 3) differentia-

tions. It is convenient to keep track of the terms that arise in this way using

labeled trees: we indicate in Figure 2 the trees that are associated with the

six sums in this expression.

An iterated Lie bracket such as

[E3, [E2, E1]] = E3E2E1 - E3EIE2 - E2E1E3 + E1E2E3 (4)

gives rise in this fashion to 24 trees corresponding to the 24N 3 differenti-

ations that a naive computation of this expression requires. On the other

hand, 18 of the trees cancel, saving us from computing 18N 3 terms. We

are left with 6N a terms of the form (junk)D m. A careful examination of

this correspondence between labeled trees and expressions involving the Ej's

shows that the composition of the vector fields Ej's, viewed as first order

differential operators, corresponds to a multiplication on trees. This multi-

plication is illustrated in Figure 3. It turns out that this construction yields

an algebra, which we call the algebra of Cayley lrees.



2 The algebra of Cayley trees

In this section, we follow [13] and define a bialgebra structure on spaces of
trees. The relation between trees and differential operators goes back at

least as far as Cayley [3] and [4]. Of this literature, the work most closely

related to the view point taken here is Butcher's use of trees to analyze

Runge-Kutta algorithms [1] and [2].
Let k will denote a field of characteristic 0. By a tree we will mean a

finite rooted tree. Let T be the set of finite rooted trees, and let k{7-} be

the k-vector space which has 7- as a basis.

We first define the coalgebra structure on k{'/-}. Ift E 7- is a tree whose

root has children sl, ..., st, the coproduct A(t) is the sum of the 2r terms

tl ® t2, where the children of the root of tl and the children of the root

of t2 range over all 2 _ possible partitions of the children of the root of t

into two subsets. The augmentation e Which sends the trivial tree to 1 and

every other tree to 0 is a counit for this coproduct. It is immediate that

comultiplication is cocommutative.
We next define the algebra structure on k{7"}. Suppose that tl, t2 C 7"

are trees. Let sl, ..., s_ be the children of the root oft1. If t2 has n+ 1

nodes (counting the root), there are (n + 1) _ ways to attach the r subtrees of
tl which have Sl, ..., s_ as roots to the tree t2 by making each s_ the child of

some node of t2. The product tit2 is defined to be tile sum of these (n T 1) r

trees. It can be shown that this product is associative, and that the trivial

tree consisting only of the root is a right and left unit for this product. It

can also be shown that the maps defining the coalgebra structure are algebra

homomorphisms, so that k{?-} is a bialgebra. For details, see [9].

The bialgebra k{7"} is graded: k{7"},_ has as basis all trees with n + 1

nodes. Because the bialgebra k{7-} is graded connected, it is a Hopf algebra.

We summarize the above discussion in the following theorem.

Theorem 2.1 The vector space k{T} with basis the set of finite rooted trees

is a cocommutative graded connected Hopf algebra.

Assume now that each node of the tree (except for the root) is labeled

with a symbol from the set {El, ..., EM}. _¥e can define the product and

coproduct as above, and, once again, the resulting space is a bialgebra. See

[9] for details. Let k{ET} denote this algebra.

Let R denote a subring of the commutative ring of smooth functions on

R N. We now define an action of the algebra of Cayley trees

B =



on the ring R, making R a B-module algebra, which captures the action

of trees as higher derivations. This requires that we interpret the formal

symbols Ej as derivations of R using Equations 2. The action is defined

using the map
_b : k{f..'T} _ Endk R,

as follows:

1. Given a labeled, ordered tree t with m + 1 nodes, assign the root

the number 0 and assign the remaining nodes the numbers l, ..., m.

We identify the node with the number assigned to it. To the node k

associate the summation index pk. Denote (#1, -.., pro) by p.

2. For the labeled tree t, let k be a node of t, labeled with E._k if k > 0,

and let l, ..., l' be the children of k. Define

R(k;p) = D m...D_,,,a_, ifk > 0 is not the root;

= D m...Dm, , if k = 0 is the root.

Note that if k > 0, then R(k; #) E R.

3. Define
N

¢(0= R(m;,)...R(1;,)c(0;,).
DI,...,Dm=I

4. Extend ¢ to all of k{f..T} by linearity.

It is straightforward to check that this action of B on R makes R into a

B-module algebra.
We summarize with the following theorem.

Theorem 2.2 Let R the algebra of smooth functions on I:tN. Let B denote

the algebra of Cayley trees k{Z:T}. Then R is a B-module algebra with

respect to the action defined by ¢.

3 Taylor flows for vector fields with polynomial coefficients

The standard action of the algebra A of differential operators generated by

El, ..., EM on the algebra of smooth functions R gives R the structure of a

A-module algebra. It is easy to relate this H-module algebra structures on

R to the H-module algebra structure defined in the section above.



Let
¢:A-----_B

denotethe mapsendingthegeneratorEj of the algebra A to the tree con-

sisting of two nodes: the root and a single child labeled E i. This map is

illustrated in Figure 1. Extend ¢ to be an algebra homomorphism. Let X

denote the map
A --* Endk R

defined by using the substitution (2) and simplifying to obtain an endomor-

phim of R. We have the following diagram:

A --* B

\ I (5)
Endk R

Theorem 3.1 (i) The maps x, ¢ and ¢ are related by x = ¢°¢. 5i) Fix

a function f C R and a differential operator p C A. Then

p. f = ¢(p). f.

Here the action on the left views R as an A-module algebra, while the action

on the right views R as B-module algebra.

The first assertion is proved in [12] and the second assertion follows froth
the first assertion and the definitions.

To simplify the notation, in the remainder of this section we restrict

attention to a single derivation F. We will need the following Theorem.

Theorem 3.2 Assume f E R and F E Der(R). Making use of the actions

defined in Theorem 3.1, we have:

(i) For k > O,

dk

(rkf)(x) = d-_f(exp(tF)x)1,=0.

(ii) If f is analytic near x, then for suffciently small t,

t k
f(exp(tF)x) = _ f(x; Fk)_,

k--O

whe,_ f(_; Fk) is d4ned to be (rkf)(_).
(iii) If f is analytic near _, then for sufficiently small t,

f(exp(tF)z) = exp(t¢(F)), fl_.



PROOF. Assertions (i) and (ii) can be found in [20]. Theorem 3.1 and As-

sertion (ii) then give Assertion (iii).
Assume now that the derivation F is of the form

N N

r= Eb ID.I+ b ;x 2D.1
/.tl = 1 /.tl ,/_2 =1

N

+ _ -.2ht'l,_,3-_3 xt_2Dm +...
_1 ,_2,/_3 -_1

b_,2..... ,k C k are zero.where all except a finite number of the coefficients _,1

We let kT{F,x} denote the vector space with basis the set of finite,

rooted trees, whose nodes are labeled with the symbols F and x, and let

k<F> denote the free associative algebra generated by the symbol F. We

define

¢ : k<F> _ kT{F,x}

on the generator F as indicated in Figure 4, and extend ¢ to all of k<F> by

making it an algebra homomorphism. Figure 5 illustrates the multiplication

in kT{F, x}.

We define a map

_2: kT{F,z} _ Diff(R)

as follows:

1. Given a tree t E kT{F,x} with m + 1 nodes, assign the root the

number 0 and assign the remaining nodes the numbers 1, ..., m.

2. Consider a node j, with children k, ..., k' labeled with an F and

children I, ..., 11 labeled with an x. Define

R(j; p)
ttj

= D_,, • • • Dttk, btJk,...,_,,,t_z,...,tq,,

if the node is labeled with a F;

= D,k •.. Dr, k, x "¢ ,

if the node is labeled with a x;

= D_,k...Dt,k,,

if the node is the root

(Note that in the first case, R(j; #) is zero, since the b's are constant.)



3. Define

¢(t) =
N

R(m;p)... R(1;p)R(O;p).
I_1 ,...,_m =1

4. Extend ¢ to all of kT-{F, x} by linearity.

We can now state our main theorem.

Theorem 3.3 Let the derivation F be of the form

N N

F= __, bmD m + __, -_2bm-_'2Dm
pq =1 ttl ,#2 =1

N

+ _ bm_2,p.3Z'u3zp'2D_q _.,.,

/.L1,_u2,D3----1

wh erIz_ pzb_,2....._,k E k and at most a finite number are nonzero. Then the ith

component of the nth term in the formal series expansion of the flow

_(t) = F(x(t)), x(O)= :co , z(t) ER N

is given by

where the sum is over all labeled trees u E kT{F,x} oceuring in the product

(¢(F)) n. Here the action of a tree u on the function x i is determined by

viewing R as a B-module algebra using the action just defined above, and

¢(F) is defined as in Figure 4.

This follows from Theorems 3.1 and 3.2.
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